

SCHOOL OF SCIENCES AND AEROSPACE STUDIES MAIN CAMPUS DEPARTMENT OF BIOLOGICAL SCIENCES

39 HOURS COURSE OUTLINE FOR PAT 814 (PLANT MYCOLOGY) ACADEMIC YEAR 2022/2023; SEMESTER I 4TH JULY 2022 TO 30TH SEPT 2022

a) Course Purpose

To acquaint learners with knowledge and skills on the identification, monitoring and management of fungal plant diseases

b) Course Objectives

This course seeks to facilitate learning about;

- 1. Classical and modern techniques of identification of different groups of phytopathogenic fungi.
- 2. Epidemiology of fungal plant diseases.
- 3. Detection of mycotoxins in plants using chromatographic (HPLC, LC-MS) and immunoanalytical techniques (ELISA, LFD).
- 4. Mycorrhiza fungi and their applications

c) Learning Outcomes

By the end of the course, the learner should be able to:

- 1. Apply classical and modern techniques to identify different groups of phytopathogenic fungi.
- 2. Apply different monitoring strategies to assess disease epidemics.
- 3. Formulate management strategies to control the occurrence of mycotoxins in plants
- 4. Design biocontrol assays using mycorrhizal fungi.

d) Course Content

Overview of fungal plant pathogens: disease survey; disease vectors; systematics; reproduction; life cycles. Infection process: adhesion, penetration and colonization mechanisms, fungal effector proteins, cAMP signalling and MAP kinases, toxins, cell wall degrading enzymes, hormones. Diversity of fungal pathogens: diversity indices; loss of diversity; species indicators; habitat diversity; physiology; survival and adaptations; exploitation of fungal diversity. Plant diseases caused by pathogens: rust; wilt; leaf blight; botrytis; anthracnose; damping off; black rot; mildews; blast; Diagnosis of fungal diseases: symptomatology; culture-based; morphological observations; pathogenicity; biochemical and immunological properties; nucleic sequences of genomic DNA; isoenzymes; vegetative compatibility group (VCG) analysis and electrophoretic mobility of cell wall proteins. Epidemiology of fungal diseases: infection cycle; disease triangle; intraspecific diversity; evolutionary epidemiology; landscape epidemiology. Mycotoxins: groups of fungal genera producing mycotoxins; types of mycotoxins; chemical structure and phytotoxicity; mechanisms of action; detection of mycotoxins - chromatographic techniques (HPLC, LC-MS), immunoanalytical techniques (ELISA, LFD); pre-and post-harvest management strategies of mycotoxins. Mycorrhiza: types of mycorrhizal fungi; evolution of mycorrhizal symbiosis; diversification of mycorrhizal symbiosis; physiology and ecology of mycorrhizal fungi; specificity; colonization; role of helper bacteria and mycorrhizosphere; importance of plant mycorrhiza association; application – development, quality assessment, characterisation and evaluation of inocula.

Session/week	CONTENTS /TOPICS		
1	Overview of Bacterial plant pathogenic groups		
2	Bacterial infection process		
3	Bacterial diversity		
4	Plant diseases caused by bacterial pathogens: streak, spots and blights, bacterial soft rots		
5	Vascular wilts, bacterial cankers, bacterial galls, bacterial scabs		
6	CAT I (26/07/2021)		
7	Diagnosis of bacterial diseases: Symptomatology, culture-based; morphological observations,		
8	Pathogenicity, biochemical & immunological properties, nucleic acid sequences of genomic DNA, isozymes.		
9	CAT II (16/08/2021)		
10	Epidemiology of bacterial diseases; Synergistic interactions between bacteria and other pathogens.		
11	Antibiotic resistance by bacterial pathogens		
12-13	University Examinations		

e) Class Schedule

f) Student Evaluation Criteria

	Aspects	
1	Class attendance, participation, assignments, Lab session	20%
2	Continuous Assessment Test(s)	20%
3	University Exam	60%
	TOTAL	100%

g) References:

- 1) Agrios, G. N. (2005). *Plant Pathology*, (5th ed). Elsevier Academic Press, Inc.: New York. 922 pp. <u>https://www.elsevier.com/books/plant-pathology/agrios/978-0-08-047378-9</u>
- 2) Bolton, M. D. & Thomma, P. H. J. (2012). Plant Fungal Pathogens: Methods and Protocols in Molecular Biology. Vol. 835. Springer Protocols. Humana Press
- 3) Byrde R. J. W. & C. V. Cutting (1973). Fungal Pathogenicity and the Plants' Response. Academic Press. <u>https://doi.org/10.1016/B978-0-121-48850-5.X5001-9</u>. ISBN: 978-0-12-148850-5.
- 4) Hornby, D. (1998). Diseases caused by soilborne pathogens. In: Jones D. G. The Epidemiology of Plant Diseases. Springer, Dordrecht. <u>https://doi.org/10.1007/978-94-017-3302-1_15</u>
- 5) John, W. & Roland, W. (2007). Introduction to Fungi. (3rd ed). ISB 9780521807395. Cambridge. <u>https://www.amazon.com/Introduction-Fungi-John-Webster-ebook/dp/B00CF0JPWC</u>
- 6) Rolf, A. P. & Bohnert, H. J. (2003). Genomics of Plants and Fungi. (1st ed). ISBN-13: 978-0824741259. CRC Press, pp440. <u>https://www.routledge.com/Genomics-of-Plants-and-Fungi/Prade-Bohnert/p/book/9780367446741</u>
- 7) Any other relevant book.
- 8) The Internet

h) Key Journals

- i) Fungal Diversity
- ii) Fungal Ecology

COURSE LECTURER: PHONE NO: E-MAIL ADDRESS:

SIGNATURE

Dr. MAKUMBA BILLY 0720 670 935 / 0733 253 767 billymakumba@mu.ac.ke / billymakumba@gmail.com/ billymakumba@yaboo.com

iii) Journal of Fungi

iv) Yeast and Fungal Research

4th July 2022

DATE

CHAIR OF DEPARTMENT:

SIGNATURE

DATE

