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Abstract

One of the pressing issues in agriculture today is low crop yields due to plant
diseases and pathogens. Chemical pesticides have generously been applied as
remedies to improve the situation, but continue to be shunned globally due to
their long-term environmental impacts. Endophytes are microbes that live sym-
biotically in plant tissues and are continually being associated with the suppres-
sion of phytopathogens and plant health. Thus, they present an environmentally-
friendly option in plant defense against phytopathogens. However, their diversity,
lifestyle, and roles in plant defense against phytopathogens are still not well-
understood. This chapter explores the lifestyle of endophytic bacteria and
discusses their diversity and metabolites involved in plant defense against
phosphagens. The chapter further examines the future prospects and evaluates
the emerging gaps relative to their use in plant defense against phytopathogens.
Such knowledge is critical in fully exploiting their potential in sustainable
agriculture.
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4.1 Introduction

There are efforts worldwide to increase agricultural production to meet the increas-
ing demand for food for the equally-increasing global population (FAO 2017).
However, these efforts are still hampered by yield losses from crop pests and
diseases (2016). Recent estimates indicate that at least 20—40% of these losses are
due to plant pathogens alone which account for annual global losses of approxi-
mately $40 billion (Ab Rahman et al. 2018). Conventional and contemporary
agriculture largely depends on chemical pesticides to manage plant pests and
diseases (Sivasakthi et al. 2014). While these chemicals are hugely important in
minimizing the losses, their indiscriminate use continues to elicit a lot of debate
concerning pathogen resistance (Borel 2017), soil/water pollution (Zhang et al.
2011), and effects on nontarget organisms (Mufioz-Leoz et al. 2013; Shao and
Zhang 2017; Ankit et al. 2020). As such, alternatives to these chemicals are widely
advocated for (Waghunde et al. 2017; Verma et al. 2019). One such option is the
exploitation of plant-microbe interactions which offer an efficient, affordable, and
environmentally-friendly alternative to synthetic pesticides for phytopathogen con-
trol (Tewari et al. 2019).

The exploitation of symbiotic association of microbes with plants has currently
become an important tool in plant bio-protection (Gaiero et al. 2013; Gupta et al.
2015). Some of the most studied plant-associated microbes are planted growth-
promoting rhizobacteria (PGPR) (Glick 2012; Verma et al. 2019). Endophytes are
a subset of PGPR that live endosymbiotically in plants (Gond et al. 2015), without
negatively affecting their hosts (Hardoim et al. 2015). Endophytic rhizobacteria
reside in many plants as part of their normal microbiome as dictated by biotic and
abiotic factors like soil conditions, biogeography, and plant species, among other
factors (Gaiero et al. 2013). Within the host microenvironments, endophytes have
direct access to nutrients, face less competition from other rhizospheric microbes,
and receive protection from environmental stresses (Dutta et al. 2014). Due to the
intimate interactions endophytes form with their host plants, they are thought to be
more crucial for plant defense against phytopathogens compared to their external
counterparts (Tewari et al. 2019).

At the moment, microbial endophytic communities are the center of focus for
scientists who aim to unravel and clarify their connection to plant health (Vurukonda
et al. 2018). The potential of endophytic bacteria for plant defense against
phytopathogens through the production of antibiotics and other antimicrobial
metabolites has been researched extensively (Shehata et al. 2016; Sandhya et al.
2017; Vurukonda et al. 2018; Tewari et al. 2019; Singh et al. 2020; Morales-Cedefio
et al. 2021). Despite the voluminous literature on the plant protection abilities of
endophytic bacteria, our understanding of endophytic lifestyle, diversity, and
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mechanisms involved in plant defense are still limited, hindering their utilization and
applications in plant disease management. This chapter discusses the endophytic
lifestyle in detail and assesses the diversity of endophytic bacteria involved in plant
defense against phytopathogens. In the last sections of the chapter, the secondary
metabolites of endophytic bacteria that together contribute to plant defense against
phytopathogens are critically examined. Finally, the chapter provides a direction on
the future of endophytic bacteria in plant defense against phytopathogens in view of
enhancing our understanding and prospects of the complex plant-endophyte rela-
tionship and plant disease management.

4.2  Endophytic Lifestyle

The term “endophyte” originates from two Greek words; “endon” and “phyton,”
which denote “within” and “plant” respectively (Waghunde et al. 2017). Endophytic
bacterial communities can be obligate, facultative, or passive depending on their
modes of interaction with host plants (Gaiero et al. 2013). Obligate endophytes are
those that can survive solely within plants and are, therefore, viable but
nonculturable, with important implications on their identification and study of their
diversity and community structures (Gaiero et al. 2013; Kumar et al. 2021). On the
other hand, passive or opportunistic endophytes can live partly as epiphytes outside
the plant and gain entry into plants when conditions allow while facultative
endophytes can alternate between living in and without plants (Waghunde et al.
2017).

Endophytic bacteria are a subset of rhizobacteria that acquire the ability to invade
plant roots and live endosymbiotically in plant root tissues (Compant et al. 2005,
2010; Kumar et al. 2016). Endophytic bacterial communities are generally
dominated by Proteobacteria, followed by Actinobacteria, Firmicutes, and
Bacteroidetes in more or less equal proportions (Liu et al. 2017). In terms of genera,
the most abundant plant endophytic bacteria are Bacillus and Streptomyces
(Reinhold-Hurek and Hurek 2011). Endophytic bacteria often penetrate and colonize
the root epidermis at the sites of the emergence of lateral root emergence, in root
cracks, and below the root hair zones (Compant et al. 2005) and can establish
themselves in plant tissues both intercellularly and intracellularly (Zakria et al.
2007). After the initial colonization, some endophytes can migrate to other plant
parts through the vascular tissues and spread systemically inside the plant (Compant
et al. 2005; Zakria et al. 2007). Although rhizospheric bacteria can also enter and
colonize plant roots as endophytes (Santoyo et al. 2016), plant root endospheres are
dominated by only a few rhizobacterial groups, which evidences the robust selection
of rhizobacteria from soil to plants (Liu et al. 2017).

The rhizosphere is a highly competitive environment for microorganisms in terms
of space and acquisition of nutrients (Raaijmakers et al. 2002), and particular traits
are needed for plant colonization and the endophytic lifestyle (Afzal et al. 2019;
Morales-Cedefio et al. 2021). Plant root colonization generally requires potential
endophytes to reach the root surfaces chemotactically, outcompete other
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rhizospheric microbes, enter the root passively or actively using cell-wall-degrading
enzymes (Elbeltagy et al. 2000) and resist the plant host immune responses through
the expression of pathogen-resistance genes (Bais et al. 2006; Rosenblueth and
Martinez-Romero 2006; Compant et al. 2010; Singh et al. 2017). In this regard,
motility and production of polysaccharides for attachment to plant root surfaces are
some of the relevant traits that facilitate plant root colonization (Santoyo et al. 2016).
Chemotaxis-induced rhizobacterial motility is especially important for successful
root colonization and endophytism (Jiménez et al. 2003). Additionally, transport
proteins for the uptake of plant nutrients, secretion systems involved in the endo-
phytic lifestyle, and detoxification mechanisms for protection against plant-induced
oxidative stresses during infection have all been identified as determinants of
successful endophytism (Sessitsch et al. 2012; Ali et al. 2014).

The coordinated invasion of plant roots by microbes involves numerous recipro-
cal signaling pathways between plants and endophytes (Rosenblueth and Martinez-
Romero 2006). It is hypothesized that endophytic bacteria possess unique genes that
make them fit for endophytic lifestyle (Ali et al. 2014). Although no definitive
assemblage of genes has been acknowledged to be responsible for endophytic
lifestyle, it proposed that endophytic bacteria may have different genomic
characteristics from external rhizobacteria that enable the colonization of internal
plant tissues (Santoyo et al. 2016). Some genomic evaluations of endophytes have
established the presence of genes related to endophytic colonization of plant tissues
(Taghavi et al. 2010; Kaneko et al. 2010; Gold et al. 2014; Lopes et al. 2017,
Chlebek et al. 2020; Singh et al. 2021). Genome comparisons have also revealed the
important capabilities of endophytic bacteria. For instance, a genome comparison of
endophytic and external rhizospheric Burkholderia spp. recently identified the
existence of genes encoding proteins associated with secretion and detoxification
systems, degradation of plant cell walls, and maintenance of redox potential, among
other hypothetical genes in the endophytic strains (Ali et al. 2014).

The composition and structure of plant-endophytic bacteria are dependent on
various factors such as plant health, part, nutritional state and stage of growth, type
of soil, altitude, and temperature, among others (Hardoim et al. 2008). Whether
living in plant tissues is advantageous to bacterial endophytes, relative to the freely-
living rhizobacteria is not properly understood (Rosenblueth and Martinez-Romero
2004). Nevertheless, endophytes may be better plant-defense agents over their
external counterparts in the rhizosphere due to the direct contact with the plant
root tissues which offer an opportunity to exert their beneficial effects more directly
(Santoyo et al. 2016). According to Afzal et al. (2019), living endosymbiotically and
being in direct contact with plant tissues enables endophytes to readily exert direct
beneficial effects to their plant hosts in exchange for a consistent supply of nutrients.
It is also propounded that endophytes can be more efficient than their external
rhizobacterial counterparts because they are protected from abiotic stresses in the
rhizosphere (Hardoim et al. 2015).
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4.3 Diversity of Endophytic Bacteria Involved in Plant Defense
Against Phytopathogens

Various endophytic bacteria contribute to the defense of plants against
phytopathogens (Singh et al. 2020; Morales-Cedefio et al. 2021), for instance, the
production of lytic enzymes and antibiotics and the elicitation of plant defense
mechanisms against their pathogens (Pérez-Montafio et al. 2014). Recently, Santoyo
et al. (2016), the diversity of bacterial endophytes involved in the suppression of
phytopathogens were listed as Arthrobacter, Burkholderia, Bacillus, Enterobacter,
Microbacterium  Methylobacterium, Sphingomonas, Micrococcus, Pantoea,
Rhanella, Phyllobacterium, Pseudomonas, Paenibacillus, Rhodanobacter, and
Stenotrophomonas. Bacillus and Streptomyces are, however, the most abundant
(Reinhold-Hurek and Hurek 2011).

Bacilli are some of the most important bacteria for plant disease suppression due
to their antimicrobial metabolites (Aloo et al. 2019b; Riaz et al. 2021). Fairly, recent
investigations have shown the in vitro and in vivo antagonistic activities of endo-
phytic B. methylotrophicus, B. amyloliquefaciens, and B. subtilis against the rice-
blast-causing Xanthomonas oryzae pv. oryzae (El-shakh et al. 2015). Bacillus
subtilis endophytic in Brassica campestris also recently exhibited strong antagonis-
tic activities against X. oryzae pv. oryzae (Cheng et al. 2016). Similarly, tomato-
endophytic B. amyloliquefaciens (Nawangsih et al. 2011), and chilli-endophytic B.
pseudomycoides, B. thuringiensis, B. mycoides (Yanti et al. 2018) have previously
been shown to suppress bacterial wilt disease-causing pathogens. More recently,
rice-endophytic B. cereus and B. mojavensis (Etesami and Alikhani 2017) and
several other rice-endophytic bacilli (Khaskeli et al. 2020) have also shown antago-
nistic abilities against several rice phytopathogens like Magnaporthe oryzae,
F. moniliforme, F. graminearum, and Rhizoctonia solani. Many other studies have
confirmed the antagonistic properties of endophytic Bacilli against different
pathogens like F. Circinatum causing pitch canker in Pinus (Soria et al. 2012),
R. solani causing damping-off in cotton (Selim et al. 2017), X. citri subsp. citri
causing citrus canker in citrus (Citrus aurantiifolia) (Daungfu et al. 2019), Bortyris
cinerea causing the gray mold disease in many crops (Kefi et al. 2015),
Colletotrichum lindemuthianum causing in beans (Gholami et al. 2013), and Fusar-
ium causing head blight in wheat plants (Chen et al. 2018).

Owing to their powerful antagonistic activities and production of various
antifungal metabolites (Colombo et al. 2019), endophytic Streptomyces have also
extensively been studied for the biocontrol of plant fungal pathogens. For instance,
bean-endophytic S. cyaneofuscatus, S. flavofuscus, S. parvus, S. acrimycini have
previously been shown to control the Anthracnose disease in the plant caused by
C. lindemuthianum (Gholami et al. 2013). Similarly, rice-endophytic Streptomyces
spp. have also shown effectiveness against its leaf-blight causing X. oryza. (Hastuti
etal. 2012). The suppression of R. solanacearum by Streptomyces spp. has also been
established (Achari and Ramesh 2014). Recently, Colombo et al. (2019) identified
an endophytic Streptomyces that can reduce the symptoms of Fusarium head blight
in wheat. Likewise, Tan et al. (2011) also demonstrated the biocontrol ability of
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tomato-endophytic S. virginiae against its wilt-causing R. solanacearum. Several
other endophytic Streptomyces have been implicated in the suppression of plant
pathogens (Dias et al. 2017; Vurukonda et al. 2018; Anusha et al. 2019; Zhu et al.
2020).

Pseudomonas spp. are some of the most beneficial rhizobacteria because of their
potential as biocontrol agents (Haas and Défago 2005). Endophytic Pseudomonads
seem to be widely associated with the control of phytopathogens as evidenced by
several studies (Table 4.1). Fluorescent pseudomonads have specially gathered a lot
of attention as biocontrol agents because of their metabolic versatility (Raaijmakers
and Mazzola 2012), and adaptability to different environmental conditions, and
efficient colonization of plant roots (Ma et al. 2016). Cognizant of this, these
rhizobacteria hold immense potential with regard to promoting plant defense against
phytopathogens.

Leguminous plants are widely associated with endophytic rhizobial species that
are largely known for biological nitrogen (N) fixation (Das et al. 2017; Volpiano
et al. 2019). Interestingly, different rhizobia have also been linked to the suppression
of plant pathogens (Chakraborty and Purkayastha 1984; Akhtar and Siddiqui 2008;
Yuttavanichakul et al. 2012; Aeron et al. 2017; Volpiano et al. 2018; Jack et al.
2019). Osdaghi et al. (2011) also established inhibitory properties of Rhizobium
leguminosarum strain against X. axonopodis causing bacterial bight in the common
bean. These reports provide preliminary evidence of the effects of rhizobia on plant
pathogens (Volpiano et al. 2019). Besides, non-rhizobial endophytic associations
with legumes have also been implicated in the control of phytopathogens.

For instance, chickpea (Cicer arietinum)-endophytic B. cereus, B. thuringiensis,
Achromobacter xylosoxidans, and B. subtilis recently showed the ability to suppress
F. solani causing the rot disease in the plant (Egamberdieva et al. 2017). Similarly,
faba bean (Vicia faba) and chickpea-endophytic Rahnella aquatilis B16C,
P. yamanorum B12, and P. fluorescens B8P have recently been shown to have
antifungal properties against F. solani in vitro and in vivo (Bahroun et al. 2018).
Non-rhizobial endophytic bacilli of chickpea such as B. cereus, B. subtilis,
B. thuringiensis were recently demonstrated to inhibit F. solani causing the root
rot disease in the plant (Egamberdieva et al. 2017). These studies show that
non-thizobial legume endophytes are also important in plant-pathogen/disease
suppression.

Several other studies have implicated different endophytic bacterial genera in
phytopathogen antagonism. For instance, tomato-endophytic Staphylococcus
epidermidis have previously been shown to significantly lower the incidence of
bacterial wilt disease of the plant caused by R. solanacearum (Nawangsih et al.
2011). Up to 96% in vitro suppression of the wilt-causing F. oxysporum by endo-
phytic Stenotrophomonas maltophilia, Azotobacter chroococum and Serratia
marcescens of Solanum sodomaceum and S. bonariense has recently been
established (Abdallah et al. 2020). Endophytic Enterobacter of eggplants,
cucumbers, and groundnuts (Ramesh et al. 2009), Enterobacter sp., and
Agrobacterium sp. of Solanaceous (Achari and Ramesh 2014) have also been
shown to reduce bacterial wilt caused by R. solanacearum. Other endophytic
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bacterial genera that have been shown to facilitate plant defense against
phytopathogens include Pinus-endophytic Burkholderia spp. against F. circinatum
causing pitch canker in the plant (Soria et al. 2012), cotton-endophytic
Stenotrophomonas maltophilia against R. solani causing damping-off in the plant
(Selim et al. 2017), maize-endophytic Paenibacillus polymyxa and Citrobacter
sp. against F. graminearum causing gibberella ear rot in the plant (Mousa et al.
2015), rubber-endophytic S. marcescens against the wilt-causing Fusarium in
banana (Tan et al. 2015), tomato-endophytic Brevibacterium halotolerans against
Botrytis cinerea causing the gray mold disease in various crops (Kefi et al. 2015),
black-pepper-endophytic Enterobacter and Serratia against Phytophthora blight in
the plant (Irabor and Mmbaga 2017), cucumber (Cucumis sativus L.)-endophytic
Ochrobactum pseduintermedium and Pantoea agglomerans against P. syringae
pv. lachrymans causing the angular leaf spot disease in the plant (Akbaba and
Ozaktan 2018), and corn-endophytic Burkholderia gladioli against Sclerotinia
homoeocarpa of bentgrass (Shehata et al. 2016).

4.4 Endophytic Metabolites Involved in Plant Defense Against
Phytopathogens

The biocontrol activities of many plant-endophytic strains are largely mediated by
their secondary metabolites such as lytic enzymes, antibiotics, volatile organic
compounds (VOCs), and siderophores (Gunatilaka 2006). According to Jain and
Pandey (2016), these secondary metabolites are important defense mechanisms for
plant defense against phytopathogens. Herein, we discuss the various metabolites
through which endophytic bacteria are known to suppress plant pathogens/diseases.

4.4.1 Antibiotics

The defense of plants against phytopathogens is widely associated with the synthesis
of antibiotics (Liu et al. 2017; Khedher et al. 2021). Some of the best-studied
antibiotics are lipopeptides such as surfactin, fengycin, iturin, and bacillomycin
(Cai et al. 2013). Various studies have established the activities of endophytic
lipopeptides against plant pathogens. For instance, the inhibitory activities of
lipopeptides of Bacillus spp. isolated from Indian popcorn and yellow dent corn
have previously been demonstrated against F. moniliforme (Gond et al. 2015).
Endophytic bacilli like B. amyloliquefaciens and B. subtilis that produce lipopeptide
antibiotics against different phytopathogens have also been investigated (Gond et al.
2015; Jayakumar et al. 2019). Similarly, lipopeptides like iturin-A, bacillomycin-D,
surfactin, and fengycin-D of endophytic B. methylotrophicus, B. velezensis, B.
amyloliquefaciens, and B. mojavensis isolated from Citrus reticulata, C. sinensis,
C. limon, Laurus nobilis, and Medicago truncatula have also been investigated
against Phoma tracheiphila (Kalai-Grami et al. 2014). In maize, there is evidence
that endophytic bacteria can protect their hosts by secreting antifungal lipopeptides
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that induce the up-regulation of pathogenesis-related genes (Gond et al. 2015). The
association between rhizobacterial lipopeptides and plant resistance against
phytopathogens has also been established in B. subtilis against R. solani in rice
(Chandler et al. 2015), and P. fluorescens against P. aphanidermatum in turmeric
(Prabhukarthikeyan et al. 2018).

Several studies have confirmed the genomic capacity of antibiotic production in
plant-endophytic bacteria with the potential to defend plants against deferent
phytopathogens (Loper and Gross 2007; Chen et al. 2009; Qin et al. 2015; Li et al.
2020). According to Stein (2005), between 4 and 5% of B. subtilis genome is
dedicated to the synthesis of antibiotics. Fairly recently, lipopeptides were also
established in the genomes of endophytic Bacilli associated with wild Solanaceous
plants with antagonistic potential against F. oxysporum f. sp. lycopersici (Abdallah
et al. 2017). The antagonistic potential of cotton-endophytic Bacillus spp. against
Verticillium wilt has also been linked to the existence of genes encoding for
bacillomycin, surfactin, and fengycin antibiotics (Hasan et al. 2020). In another
recent study, molecular studies also revealed the occurrence of biosynthetic genes
encoding for lipopeptides in common-bean-endophytic B. amyloliquefaciens,
B. halotolerans, B. velezensis, Agrobacterium fabrum, and P. lini with antifungal
activities against Fusarium sp., Alternaria sp., and Macrophomina sp. causing root
rot disease in the plant (Sendi et al. 2020).

Endophytic Streptomyces spp. are similarly widely recognized for their potential
to defend plants against phytopathogens through the production of antibiotics (Jones
and Elliot 2017). Snake-vine (Kennedia nigriscans)-endophytic Streptomyces
sp. NRRL-30562 was previously documented to produce munumbicins which are
active against different plant phytopathogenic fungi and bacteria (Castillo et al.
2002). Fairly recently, antibiotic-producing legume-endophytic S. caeruleatus was
also showed antagonism against the soybean pathogen, X. campestris (Mingma et al.
2014). Several other studies have demonstrated phytopathogen control mediated by
antibiotic-producing plant root-endophytic Streptomyces (Xu et al. 2017,
Chandrakar and Gupta 2019; Marian et al. 2020).

Fluorescent pseudomonads have also attracted a lot of interest as plant protection
agents (Olorunleke et al. 2015), particularly, through the production of antibiotics
(Mazurier et al. 2009; Shankar et al. 2017; Prabhukarthikeyan et al. 2018; Andreolli
et al. 2019). Generally, the synthesis of antibiotics by Pseudomonas spp. and other
rhizobacteria involve a multienzyme complex known as the non-ribosomal peptide
synthetase that contains domains for selecting, loading, and synthesizing amino
acids, and secreting the antibiotics (Strieker et al. 2010; Dunlap et al. 2013). The
genomic biosynthesis of antibiotics has also been attributed to the presence of
polyketide synthases, especially in endophytic bacilli (Cai et al. 2016; Harwood
et al. 2018).

Antibiotics are probably some of the most studied rhizobacterial metabolites (Liu
et al. 2017). The production of antibiotics by plant-endophytic bacteria especially
holds immense potential in plant defense against phytopathogens because of the
intimate interaction of endophytes and their plant hosts (Lopes et al. 2017; Tewari
et al. 2019), which can allow for more efficient and direct antibiosis on
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phytopathogens. Besides, some antibiotics have a broad spectrum of activity and can
be effective against several phytopathogens.

4.4.2 Lytic Enzymes

Most bacteria produce enzymes that can lyse polymeric compounds such as proteins,
chitin, glucans, lipids, and cellulose which are the principal components of phyto-
pathogenic fungal cell walls (Lee et al. 2013; Villarreal-Delgado et al. 2018). Among
the most studied rhizobacterial lytic enzymes are cellulases, p-1,3-glucanases,
chitinases, and proteases (Mota et al. 2017). Table 4.2 displays some lytic enzymes
of endophytic bacteria that have been associated with plant defense against various
phytopathogens. Chitinases are the largest group of plant defense-related enzymes
(Jalil et al. 2015), involved in the inhibition of phytopathogenic fungi through the
hydrolysis of the glycosidic bonds of the chitin components of their cell walls (Lopes
et al. 2017). Generally, the synthesis of lytic enzymes involved in the hydrolysis of
pathogen cell-walls has been reported in different endophytic Pantoea, Micrococ-
cus, Pseudomonas, Burkholderia, —Chryseobacterium, Stenotrophomonas,
Brevundimonas, Bacillus, Alcaligenes, Microbacterium, Serratia, Enterobacter,
Curtobacterium, and Acinetobacter (Kalai-Grami et al. 2014; Rania et al. 2016;
Vurukonda et al. 2018).

Lytic enzymes are normal metabolites of endophytic bacteria to aid entry into
plant roots during plant colonization (Compant et al. 2005; Taghavi et al. 2010;
Sessitsch et al. 2012; Liu et al. 2017). However, these enzymes also lyse the cell
walls of phytopathogens which possess similar cell wall materials to plants, and the
link between endophytic lytic enzymes and the suppression of plant pathogens must
not be overlooked.

4.4.3 Siderophores

Siderophores are microorganic bacterial metabolites which are produced mostly
under iron (Fe)-deficient conditions to bind Fe (Goswami et al. 2016; Ghosh et al.
2020). These micromolecules have for years gathered attention due to their potential
to control phytopathogens through the formation of siderophore-Fe complexes that
limit Fe availability in the rhizosphere (Martinez-Viveros et al. 2010; Khedher et al.
2021).

Although plant pathogens can also produce siderophores, it is advanced that
rhizobacterial siderophores have a much greater Fe affinity than those of pathogens
which consequently inhibit the proliferation of pathogens in the rhizosphere
(Compant et al. 2005; Jain and Pandey 2016; David et al. 2018). Consequently,
siderophore production is an important aspect of phytopathogen antagonism and
plant disease management (Khedher et al. 2021).

The production of different types of siderophores has been established in various
endophytic bacteria. During the analysis of secondary metabolites of rice-endophytic
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P. aeruginosa BRp3 active against the blight-causing X. oryzae, mass-spectrometric
analyses detected the presence of phenazine, pyochelin, and pyocyanin types of
siderophores (Yasmin et al. 2017). In an earlier study, the production of
hydroxamate and carboxylate siderophores Phyllanthus amarus endophytic
P. fluorescens ENPF1 with antagonistic properties against stem blight pathogen
Corynespora casiicola was established (Mathiyazhagan et al. 2004). The production
of different siderophores has also been established in Rhizobia capable of in vitro
and in vivo inhibition of fungal pathogens (Srinivasan 2017; Singh et al. 2018).
Rice-endophytic siderophore-producing Streptomyces spp. with antagonistic
abilities against X. oryzae causing bacterial leaf blight on the plant have also been
documented (Hastuti et al. 2012).

Recently, various endophytic B. niabensis, B. subtilis, B. mojavensis with antag-
onistic properties against the banana wilt-causing pathogen were shown to produce
various types of siderophores in dual cultures (Kesaulya et al. 2017). In a separate
study, the production of siderophores by endophytic Pseudomonas, Acinetobacter,
Enterobacter, and Bacillus was significantly and positively correlated with the
inhibition of P. sojae (Zhao et al. 2018). In a more recent study,
B. amyloliquefaciens, B. halotolerans, B. velezensis, Agrobacterium fabrum, and
P. lini endophytic in common bean and displaying antifungal activities against the
root-rot-causing Fusarium sp., Macrophomina sp., and Alternaria sp. were shown to
produce siderophores (Sendi et al. 2020). In yet another study, the in vitro and in
planta antagonistic properties of Acinetobacter sp., P. aeruginosa, and Enterobacter
sp. endophytic in turmeric (C. longa L. against P. aphanidermatum and R. solani
causing leaf blight and rhizome rot respectively were associated with the production
of siderophores (Vinayarani and Prakash 2018).

Siderophore biosynthesis, uptake, and transport are generally regulated by
Fe-sensitive Fur proteins, sigma factors (RpoS, PvdS, and Fpvl), global regulators
(GasS and GasA), quorum-sensitive autoinducers, and several site-specific
recombinases (Ravel and Cornelis 2003; Compant et al. 2005; Ollinger et al.
2006). Although siderophores are common metabolites of all rhizobacteria, endo-
phytic siderophores may especially be more important in eliciting plant defense
against phytopathogens because of the intimate associations endophytes have with
their plant hosts (Lopes et al. 2017). Siderophores are also associated with induced
systemic resistance of plants against phytopathogens (Nagarajkumar et al. 2004;
Djavaheri et al. 2012). Besides the suppression of plant pathogens, rhizobacterial
siderophores can also increase Fe supply to plants (Goswami et al. 2016; Aloo et al.
2019b). Although the siderophore-mediated defense of plants against
phytopathogens may be restricted to the sites of production and may be inefficient
in tackling plant pathogens away from the sites of production, siderophore produc-
tion and siderophore-producing rhizobacteria are a classic example of how
rhizobacteria can suppress plant pathogens and should not be overlooked (Aloo
et al. 2019a).
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444 \Volatile Organic Compounds

Volatile organic compounds (VOCs) are microorganic compounds of low polarity
and high vapor pressure produced by microorganisms through different metabolic
pathways as part of their natural metabolism (Vespermann et al. 2007).
Rhizobacterial VOCs are not only important in the direct defense against
phytopathogens (Ryu et al. 2004) but can also improve root growth nutrient acquisi-
tion and enhance plant health under abiotic stress (Khan et al. 2017).

Various studies have demonstrated the relationship between endophytic bacterial
VOCs and phytopathogen control. For instance, diffusible VOCs of endophytic
Stenotrophomonas maltophilia, Azotobacter chroococcum S11, S. marcescens
S14, and Bacillus sp. SV81 obtained from Solanum bonariense, and
S. sodomaeum are some of the compounds that were recently implicated in the
in vitro control of F. oxysporum causing the wilt disease in Solanaceae plants
(Abdallah et al. 2020). In a separate study, two endophytic bacteria identified as
Stenotrophomonas maltophilia CR71 and P. stutzeri E25 from Physalis ixocarpa
antagonism against B. cinerea in dual cultures was attributed to the production of
volatile dimethyl disulphide (Rojas-Solis et al. 2018). Similarly, various VOCs of
P. putida BP25 endophytic in black pepper have the potential to suppress
R. pseudosolanacearum, P. myriotylum, Athelia rolfsii, R. solani, P. capsica,
C. gloeosporioides, Gibberella moniliformis, Radopholus similis, and Magnaporthe
oryzae (Agisha et al. 2019). The antifungal activities of various VOCs of black
pepper-endophytic P. putida BP25 against the rice-blast-causing Magnaporthe
oryzae have also been established (Patel et al. 2020). In a separate study, that
evaluated various endophytic Pseudomonas spp. for the in vitro suppression of
sunflower fungal infections caused by F. solani, M. phaseolina, R. solani, and
F. oxysporum, most of them were found to produce volatile antifungal metabolites
(Moin et al. 2020).

Rhizobacterial VOCs can largely be classified as alcohols, hydrocarbons,
ketones, acids, ethers, esters, and sulfur-containing compounds (Lee et al. 2012;
Audrain et al. 2015). In rice, the effects of endophytic S. platensis F-1 VOCs on the
control of Botrytis cinerea, R. solani, and S. sclerotinium causing fruit rot of
strawberry, leaf/seedling blight of rice, and leaf blight of oilseed rape respectively
were previously investigated and grouped into alcohols, esters, acids, alkanes,
ketones, and alkenes (Wan et al. 2008). In a more recent study by Sheoran et al.
(2015), the VOCs produced by black-pepper-endophytic P. putida BP25 against
P. capsici, Giberella moniliformis, P. myriotylum, R. solani, C. gloeosporioides,
Athelia rolfsii, and the nematode, Radopholus similis were identified as henicosane,
tetratetracontane, and pyrazine derivatives.

Hydrogen cyanide (HCN) is a volatile organic compound with antagonistic
properties against many soil-borne pathogens (Martinez-Viveros et al. 2010;
Khedher et al. 2021). According to Mushtaq et al. (2021), HCN suppresses plant
pathogens by interfering with the supply of energy to their cells through the inhibi-
tion of electron transport chains that ultimately results in cell death. The compound is
synthesized from glycine via an oxidative reaction catalyzed by a membrane-bound
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flavoenzyme known as HCN synthase (Blumer and Haas 2000; Nandi et al. 2017).
The biosynthesis of HCN involves the hcnABC operon/gene cluster (Devi et al.
2013; Mousa and Raizada 2015), whose presence has been established in several
rhizobacteria such as Streptomyces (Subramaniam et al. 2020), B. amyloliquefaciens
(Bruto et al. 2014), P. fluorescens Pf-5 (Paulsen et al. 2005), and P. aeruginosa P-18
(Singh et al. 2021).

Rhizobacterial VOCs are sometimes associated with induced systemic resistance
of plants to various pathogens. For instance, the resistance of oilseed rape (B. napus
L.) to various fungal pathogens was recently associated with its endophytic
P. fluorescens BRZ63, whose genome evaluations confirmed the existence of
genes related to the biosynthesis of VOCs like acetoin and 2,3-butanediol (Chlebek
et al. 2020). 2,3-butanediol is also one of the main VOCs that were produced by
corn-endophytic Enterobacter aerogenes that induced the plant’s resistance to
Setosphaeria turcica responsible for its Northern corn leaf blight (D’ Alessandro
et al. 2014).

Volatile organic compounds are classical and complex rhizobacterial metabolites
of importance in phytopathogen control. Unlike other metabolites whose actions
may be restricted to the production points, VOCs are unique and can be more
effective at phytopathogen control because they can diffuse over long distances
and protect the plant from phytopathogens above- and below ground, at sites distant
from the point of production (Kai et al. 2009; Santoro et al. 2011; Yuan et al. 2012).
Besides, rhizobacterial VOCs are a nonspecific type of plant defense and can be
effective against multiple phytopathogens.

4,5 Emerging Gaps and Perspectives

Interest in endophytic bacteria is quickly expanding because of the potential they
hold as alternatives to synthetic pesticides (Latha et al. 2019). However, the study of
these organisms is complicated partly due to their intimacy with plant roots (Tewari
et al. 2019). Although culture-independent techniques and modern molecular tools
are now common and have provided an avenue for comprehensive studies of
endophytic bacterial communities (Gaiero et al. 2013), researchers maintain that
some endophytes are still unculturable and can only be investigated independent of
cultures (Schloss and Handelsman 2005). Although culture-independent methods
are also challenging because pure cultures of endophytes cannot be obtained for field
application using these methodologies (Tewari et al. 2019), their application opens
up a new avenue of advancing research on the environmental factors that shape
endophytic bacterial communities. Notwithstanding, culture-dependent techniques
are still indispensable because they enable the identification of rhizobacterial physi-
ological properties and the prediction of their metabolic potentials and functions (Liu
etal. 2017). The current consensus is to complement culture-dependent with culture-
independent techniques because of the inherent biases of each (Hardoim et al. 2008;
Reinhold-Hurek and Hurek 2011). Metagenomic approaches and other culture-
independent methods might in the future reveal more information on endophytes
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that are yet to be known. Other new technologies may also be explored to study
unculturable endophytes (Thomas et al. 2008; Stewart and Brown 2012).

Genome analyses between rhizobacterial endophytes and other rhizospheric
PGPR are slowly beginning to expose the potential genes involved in the endophytic
lifestyle and phytopathogen control (Taghavi et al. 2010; Kaneko et al. 2010; Lopes
et al. 2017; Chlebek et al. 2020; Singh et al. 2021), but the experimental-
involvement in endophytic colonization has only been shown for a few of these
genes (Santoyo et al. 2016). According to Monteiro et al. (2012), these genes can
help to determine the phenotypic differences between phytopathogens and endo-
phytic bacteria. It is also unclear whether certain bacteria can live interchangeably as
phytopathogens or endophytes, and future studies may eventually clarify these
overlapping lifestyles (Gaiero et al. 2013). With the extensive availability of modern
biotechnological tools, it is expected that many studies will be conducted on the
diversity of endophytic bacteria involved in phytopathogen control to broaden our
understanding of their molecular basis of plant protection. Hopefully, such informa-
tion will also facilitate their use in the field to control plant pathogens and promote
agricultural sustainability.

Nanotechnology as a new approach can be used together with rhizobacteria
technology to better the prevention of crop diseases. Of late, researchers have shifted
focus to the development of novel/modern non-target, biodegradable, and
environmentally-friendly nano-formulations (Kaur et al. 2012; Adetunji and Neera
2017; Pestovsky and Martinez-Antonio 2017; Miastkowska et al. 2020), that may be
more effective than ordinary formulations in controlling plant pathogens (Ladner
et al. 2008; Tewari et al. 2019). Several endophytic bacteria can synthesize metallic
and oxide nanoparticles for the successful defense of plants against phytopathogens
and the diseases they cause (Singh et al. 2020). For instance, copper nanoparticles
produced by S. capillispiralis isolated from Convolvulus arvensis L. are effective
against phytopathogens like Alternaria alternata, F. oxysporum, Curvularia lunata
(Hassan et al. 2018, 2019). Similarly, endophytic S. coelicolor isolated from
Ocimum sanctum is capable of synthesizing magnesium nanoparticle effective
against R. solanacearum in tomato (El-Moslamy et al. 2019). Despite the growing
interest in endophytic nanoparticles, these are largely unexplored, and more attention
should be drawn to these. These innovative technologies suggest the unlimited
potential of endophytic bacteria for producing more effective and cost-effective
nano-formulations in the future for controlling plant diseases (Tewari et al. 2019).

Rhizobia are perhaps the most extensively investigated rhizobacteria due to their
ability to form successful symbiotic interactions with leguminous plants (Das et al.
2017). It is now known that apart from their classical biological N-fixation, rhizobia
can also suppress plant pathogens/diseases (Akhtar and Siddiqui 2008; Aeron et al.
2017; Volpiano et al. 2018; Jack et al. 2019). However, their exploitation for plant
defense against phytopathogens is still underexplored and is a promising research
niche (Tewari et al. 2019). Indisputably, more research is essential to further
establish the characteristics of these special endophytes to exploit their benefits to
the maximum for plant protection. Undoubtedly, the rhizobial inoculants with dual
functions of N-fixation and phytopathogen suppression can contribute to enhanced
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plant productivity (Das et al. 2017), and the sustainability of various agricultural
systems.

While both endophytic and external rhizobacteria have important PGP abilities
and the suppression of plant pathogens, endophytic bacteria have certain advantages
over their external counterparts, especially because of protection from the biotic and
abiotic environmental stresses in the rhizosphere (Rajkumar et al. 2009; Suman et al.
2016; Waghunde et al. 2017; Lata et al. 2019; Dubey et al. 2020). Besides,
endophytes can vertically be transmitted to subsequent plant generations, providing
the progeny with endosymbionts effective in defense against phytopathogens. Cog-
nizant of this, innovative strategies can be developed to generate planting materials
with beneficial rhizobacterial endophytes as plant bioprotectors (Mitter et al. 2016).
This kind of engineering is promising to eliminate the need for agrochemicals
(Orozco-Mosqueda et al. 2018).

Even though there is voluminous information on the characterization of endo-
phytic bacterial diversity and their mechanisms of plant disease suppression, their
successful application under field conditions is still wanting (Liu et al. 2017).
Generally, a deeper understanding of plant colonization by endophytic bacteria has
to be achieved to predict their successful establishment in the plant as biocontrol
agents after field application (Compant et al. 2010). Finally, the biocontrol
mechanisms discussed in this chapter apply to both endophytic bacteria and other
rhizobacteria, and there is an opportunity to explore those mechanisms that are
unique and exclusive to endophytes (Morales-Cedefio et al. 2021).

4.6 Concluding Remarks

Plant-bacteria interactions have been studied for several decades now. However, the
complete understanding of rhizobacterial endophytes remains somewhat elusive,
hindering their utilization in phytopathogen control. Although the role of endophytic
bacteria in plant disease management is undisputed, their diversity is only starting to
be explored. The community dynamics of endophytes remain an important area for
further research. Other promising areas for research are rhizo-engineering of the
endophytic microbiomes and a better understanding of key endophytic bacterial
genera and species with important biocontrol activities. Hence, futuristic research
should focus on bioprospecting of endophytic bacteria and isolating them from wild
and unexplored plants. Comprehensive knowledge on this subject will facilitate and
advance the application of endophytes in contemporary agricultural practices for the
development of sustainable food production systems. Endophytic bacteria have
opened a new avenue in the area of plant defense against phytopathogens and are
now designated as the future “plant probiotics” since they live within plants and
leverage numerous beneficial effects to plants without causing any apparent harm to
their hosts. While substantial work remains to be done, it is envisioned that soon,
formulations of endophytic bacteria can be partial substitutes to chemical pesticides
and bring forward a paradigm shift for the overall sustainability of agricultural
systems.
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