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Abstract
Conventional agriculture relies heavily on chemical pesticides and fertilizers to control plant pests and diseases and improve
production. Nevertheless, the intensive and prolonged use of agrochemicals may have undesirable consequences on the structure,
diversity, and activities of soil microbiomes, including the beneficial plant rhizobacteria in agricultural systems. Although
literature continues to mount regarding the effects of these chemicals on the beneficial plant rhizobacteria in agricultural systems,
our understanding of them is still limited, and a proper account is required. With the renewed efforts and focus on agricultural and
environmental sustainability, understanding the effects of different agrochemicals on the beneficial plant rhizobacteria in agri-
cultural systems is both urgent and important to deduce practical solutions towards agricultural sustainability. This review
critically evaluates the effects of various agrochemicals on the structure, diversity, and functions of the beneficial plant
rhizobacteria in agricultural systems and propounds on the prospects and general solutions that can be considered to realize
sustainable agricultural systems. This can be useful in understanding the anthropogenic effects of common and constantly applied
agrochemicals on symbiotic systems in agricultural soils and shed light on the need for more environmentally friendly and
sustainable agricultural practices.
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Introduction

Microbial communities are critical components of every eco-
system (Hayat et al. 2010; Fierer 2017). In agricultural sys-
tems, soil microbial communities have many ecological func-
tions, including increasing the availability and accessibility of
plant nutrients and plant bioprotection (Figueriredo et al.

2011; Gupta et al. 2015; Prashar and Shah 2016).
Rhizobacteria are beneficial components of the plant-soil
microbiome with critical functions in sustaining soil and plant
health (Adesemoye et al. 2009; Aloo et al. 2019). These mi-
croorganisms are widely associated with the solubilization
and enhanced solubility and availability of nutrients to plants,
nitrogen (N) fixation, and synthesis of plant growth-
promoting (PGP) hormones and other plant-beneficial metab-
olites (Adesemoye et al. 2009).

Conventional agricultural practices generously and indis-
criminately employ agrochemicals like insecticides, herbi-
cides, pesticides, fungicides, and fertilizers to control crop
pests and diseases and increase production (Malik et al.
2017). Nevertheless, the continued use of agrochemicals in
present-day agriculture continues to modify the diversity and
structure of the beneficial plant rhizobacteria in agricultural
systems (Malik et al. 2017; Hashimi et al. 2020). Literature
advances that agrochemicals can affect the population, bio-
chemical processes, and several functions of beneficial soil
bacteria (Demanou et al. 2004; Ubuoh et al. 2012). For in-
stance, some pesticides can disturb the molecular interactions
between plants and N-fixing rhizobia (Malik et al. 2017) or
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inactivate P-solubilizing and diazotrophic microbial commu-
nities (Hussain et al. 2009). This way, agrochemicals can af-
fect the mineralization of organic compounds and related soil
biogeochemical processes such as nutrient cycling and bio-
availability to plants (Malik et al. 2017). Although insecticides
have the greatest effects on soil microbes, followed by fungi-
cides, and herbicides, all agrochemicals impact beneficial mi-
croorganisms negatively in one way or another and subse-
quently affect nutrient cycling and soil fertility (Hashimi
et al. 2020).

The importance of beneficial plant rhizobacteria and the vital
roles they play in agriculture have widely been popularized
(Adesemoye et al. 2009; Abbasi et al. 2011; Ahemad and
Khan 2011b, 2012c; Abaid-Ullah et al. 2015; Aloo et al.
2021a). With the renewed efforts and focus on agricultural and
environmental sustainability, understanding the effects of differ-
ent agrochemicals on the beneficial plant rhizobacteria is of par-
amount importance (Meena et al. 2020). Some studies have
attempted to elucidate the effects of chemical fertilizers (Lin
et al. 2019; Bai et al. 2020; Reid et al. 2021) and pesticides
(Ahemad and Khan 2011b; Kumar et al. 2019; Ankit et al.
2020; Mundi et al. 2020) on the structure, population, and bio-
chemical processes of beneficial plant rhizobacteria in agricultur-
al systems. Other studies have demonstrated that the chemicals
affect the beneficial microbial communities because of the
changes they induce in soil (Hartmann et al. 2015a; Prashar
and Shah 2016; Li et al. 2020). Similarly, some studies have also
established the effects of several pesticides on the activities of
rhizobacterial enzymes that drive key functions in agricultural
systems (Shukla 2000; Hussain et al. 2009; Riah et al. 2014;
Meena et al. 2020). Despite the voluminous literature that con-
tinues to pile regarding the effects of these chemicals on the
beneficial plant rhizobacteria in agricultural systems, our under-
standing of them is still limited, and a proper account is needed.
The present review gives an account of the different types and
global proportions of agrochemicals, discusses their effects on
the beneficial plant rhizobacteria in agricultural systems, and
deliberates on some management options that can be considered
for the sustainability of these systems. Such information can
facilitate the adoption of measures to reduce the impacts of ag-
rochemicals on the beneficial plant rhizobacteria in agricultural
systems and may ultimately promote the development of more
sustainable crop production systems.

Proportions and types of agrochemicals used
around the world

Agrochemicals comprise herbicides, fungicides, insecticides,
nematicides, molluscicides, rodenticides, and fertilizers
(Sharma et al. 2019). A general depiction of the different types
of agrochemicals and major examples of each type are pro-
vided in Fig. 1.

Pesticides are principally employed to control pests like in-
sects and weeds (Sharma et al. 2019). The classification of
pesticides can be done according to their chemical structures,
modes of action, target molecules, and possible health effects
(Hashimi et al. 2020). Pesticides can also be classified accord-
ing to their target organisms, application requirements, and oth-
er factors (Jayaraj et al. 2016). Nevertheless, the common clas-
sification of pesticides entails their chemical compositions as
organochlorines, organophosphates, carbamates, pyrethroids,
microbial pesticides, growth regulators, and neonicotinoids as
detailed by Lushchak et al. (2018). The general grouping of
pesticides based on their chemical constituents and modes of
action is also provided by Jayaraj et al. (2016).

Insecticides are a group of pesticides that are used to con-
trol insects in agriculture, horticulture, forestry, gardens,
homes, and offices (Gupta et al. 2019). Based on their modes
of action, insecticides can be classified as desiccants, disinfec-
tants, attractants, chemosterilants, growth regulators, hor-
mones, or pheromones (Sparks and Nauen 2015). A complete
guide to the classification of insecticides based on this criteri-
on according to the Insecticide Resistance Action Committee
of the International Crop Protection Organization is provided
by Sparks et al. (2020). Herbicides are pesticides that are used
for weed control worldwide. According to Lushchak et al.
(2018), herbicides comprise about 50% of the total pesticide
used globally and are presently the most rapidly expanding
segment of the pesticide industry. Like other pesticides, the
classification of herbicides is done according to chemical na-
ture, specificity, and time/mode of application (Peterson et al.
2013), with the most popular being glyphosate, followed by
metolachlor-S, and atrazine (Sharma et al. 2019). Fungicides
are a group of pesticides that prevent, repel, or kill phytopath-
ogenic fungi (Gupta 2011).

Like herbicides, the mode of action of fungicides is closely
related to the metabolic pathways of fungi (Lushchak et al.
2018). Some chemical classes of fungicides include benzimid-
azoles, carbamic acid derivatives, halogenated substituted
monocyclic aromatics, organomercury compounds, and
phthalimides (Balba 2007).

Despite their different classes and groups, conventional
agriculture employs all pesticides as effective and economical
means of enhancing crop yield, quality, and quantity (Sharma
et al. 2019). The global average consumption of pesticides
from 1990 to 2018 is presented in Fig. 2a. Estimates show
that the annual global consumption of pesticides is about 2
million tons (Sharma et al. 2019; Hashimi et al. 2020), out of
which about 48, 30, 18, and 6% are herbicides, insecticides,
fungicides, and other pesticides, respectively (De et al. 2014).
The USA, China, India, Italy, Argentina, Japan, Thailand,
France, Brazil, and Canada are some of the top pesticide con-
sumers globally (Amber 2017). Recent estimates show that
the global use of pesticides will increase to about 3.5 million
tons in the present year (Zhang 2018). Although China mainly
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uses pesticides in rice plantations, its pesticide consumption is
approximated to have increased from 76 to 146 million tons
between 1991 and 2006, and it is currently the largest pesti-
cide manufacturer worldwide. Japan is similarly one of the
major pesticide consumers globally and possesses the largest
pesticide market in Asia (Zhang et al. 2011). The use of pes-
ticides in Africa is still the least globally (Abate et al. 2000).
According to the FAO estimates, Africa accounts for only 2%
of the global pesticide consumption (Fig. 2c). Nevertheless,
Africa’s pesticide consumption is projected to increase in a

few decades due to its increasing population and food demand
(Snyder et al. 2015). Increased pesticide consumption is also
projected for Southern Asia (Schreinemachers and Tipraqsa
2012), where India produces about 90,000 tons of insecticides
annually and is ranked the 12th largest insecticide manufac-
turer globally (Khan et al. 2010).

Besides pesticides, conventional agriculture also relies on
chemical fertilizers to boost crop production. The global av-
erage consumption of chemical fertilizers from 1990 to 2018
is shown in Fig. 2b, while the total average fertilizer

Agrochemicals

Fertilizers Pesticides

Nitrogen Phosphorus Potassium Herbicides Insecticides Fungicides

2,4-Dichloro 

phenoxy acetic 

acid, Acetochlor, 

Alachlar, 

Atrazine, 

Butachlor, 

Glyphosate, 

Metachlor, 

Propachlor, 

DDT, DDD, 

Dicofol, 

Dieldrin, 

Lindane, 

Heptaclor, 

Endosufan, 

Isobenzan, 

Toxaphene,

Allethrin

Captan, 

Diflotan, 

Folpet, 

Mancozeb,

Carbenazin,

Carbendazim,

Kitazin,

Metalaxyl,

Benomyl,

Hexaconazole, 

Oxafun-T

Ammonium 

nitrate,

Anhydrous 

ammonia,

Urea,

Ammonium 

sulfate,

Ammonium 

sulfate nitrate,

Calcium nitrate,

Sodium nitrate

Diammonium 

phosphate, 

Monoammonium 

phosphate, 

Superphosphate, 

Ammonium 

polyphosphate, 

Rock phosphate

Potassium 

nitrate, 

Potassium 

sulfate, 

Potassium 

chloride,

Potassium 

magnesium 

sulfate

Fig. 1 Types of agrochemicals and major examples
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Fig. 2 Global and continental proportions of chemical fertilizer and
pesticide consumption. a Global average consumption of pesticides from
1990 to 2018 (FAO 2021b), b global average consumption of chemical

fertilizers from 2002 to 2018 (FAO 2021a), c total average pesticide con-
sumption by region from 1990 to 2018 (FAO 2021b), and d total average
fertilizer consumption by region from 2002 to 2018 (FAO 2021a)
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consumption by region is displayed in Fig. 2d. Over 175.5
million tons of mineral fertilizers are used annually in agricul-
tural production (FAO 2011). Futhermore, the consumption of
potassium (K), phosphorus (P), and nitrogen (N) fertilizers
was estimated to have increased from about 18, 26, and
65 kg ha-1, respectively in 2000 to about 20, 33, and 86 kg
ha-1 in 2014 when the global population surpassed 7.2 million
(FAO 2013). In 2011, the total consumption of K, P, and N
fertilizers was estimated at 176 million tons and projected to
further increase by 150, 175, and 172% respectively by the
year 2050 due to agricultural intensification in efforts to feed
the growing world population (Khan et al. 2018).
Nevertheless, N fertilizers are the most popular (Fig 2b).
According to FAO (2018), the present worldwide production
of fertilizers is 123 Tg annually, this being a 9.5-fold increase
from its production six decades ago.

Effects of agrochemicals on beneficial plant
rhizobacteria in agricultural systems

Different types of agrochemicals affect soil microbial commu-
nities differently. The effects of specific agrochemicals on the
beneficial plant rhizobacteria in agricultural systems are ex-
tensively discussed in the next sub-sections, and a schematic
illustration of the general effects of different agrochemicals on
the beneficial plant rhizobacteria in agricultural systems is
depicted in Fig. 3.

Effects of chemical fertilizers on beneficial plant
rhizobacteria in agricultural systems

Chemical fertilizers generally cause changes in soil properties
(Hartmann et al. 2015a; Prashar and Shah 2016; Li et al.
2020), which subsequently impact the soil microbial commu-
nities (Leff et al. 2015). For instance, fertilizers can increase
the nutrient supply in soil for microbial growth (Geisseler and
Scow 2014). However, this may only promote the growth of
copiotrophs as opposed to the slower-growing oligotrophs
which tend to thrive in nutrient-limited soils (Fierer et al.
2012; Hartmann et al. 2015b). Moreover, nutrient availability
depends on the types and rates of fertilizer application; hence,
different fertilizers may markedly shift the predominant mi-
crobial taxa in agricultural soils (Hartmann et al. 2015b; Sun
et al. 2015a).

Chemical fertilizers are also commonly linked to soil acidifi-
cation (Tian and Niu 2015; Zhang et al. 2016; Neog 2018; Bai
et al. 2020;Yan et al. 2020), withmarked effects on themicrobial
communities (Weishou et al. 2016; Zhang et al. 2017). It is
approximated that globally, N fertilizers have reduced the pH
of soils by an average of 0.26 units (Tian and Niu 2015).
According to Khan et al. (2018), soil microbial communities
are generally sensitive to the continuous application of N, P,

and K fertilizers. However, while most bacterial genera may be
affected by acidified soils, others like Acidothermus,
Acidobacterium, Acidobacteria, and Acidicaldus which are aci-
dophilicmay thrive in such conditions (Lin et al. 2019). Thus, the
continued application of chemical fertilizers can ultimately alter
the biological properties, functioning, and quality of agricultural
soils (Bünemann et al. 2018).

Diazotrophs are important rhizosphere microbes owing to
their symbiotic N-fixing interactions with leguminous plants
which account for up to 100 Tg N globally, per year (Fan et al.
2019). However, various studies have established negative
correlations between these microbial communities and
continuous/intensive mineral N fertilization (Feng et al.
2018; Liao et al. 2018; Fan et al. 2019; Li et al. 2019a;
Wang et al. 2020).

The effects of N fertilizers on rhizosphere microbiota as-
semblages and the performance of lettuce have recently been
investigated by Chowdhury et al. (2019). Various other stud-
ies have evaluated the effects of various fertilizers on agricul-
turally beneficial plant rhizobacteria (Table 1). The effects of
N fertilization on the abundance of N-cycling genes in agri-
cultural soils have also been established (Kelly et al. 2011;
Sun et al. 2015b; Yang et al. 2017; Ouyang et al. 2018).
Although N fertilization can shrink the diversity and richness
of microbial species in soil (Fierer et al. 2012), uncertainties
remain regarding specific effects of N fertilization on the
abundance of N-fixation genes (Reardon et al. 2014; Wang
et al. 2016) and nitrification (Carey et al. 2016).

Like other microbes, the effects of synthetic fertilizers on
diazotrophs are largely linked to the physicochemical changes
of soil like pH alterations and subsequent acidification
(Geisseler and Scow 2014; Zhao et al. 2014; Wang et al.
2017b, 2018b) that they induce in soils (2020). Reports on
the effects of soil pH on the structure and composition of
microbial communities are numerous (Lauber et al. 2009;
Rousk et al. 2009; Zhang et al. 2017; Wan et al. 2020). Soil
pH also exerts a strong influence on the abundance and diver-
sity of various N-cycling genes (Hallin et al. 2009; Liu et al.
2010; Prosser and Nicol 2012; Hu et al. 2013).

An earlier study by Juo et al. (1995) demonstrated that the
pH of soil under maize cultivation and continuous application
of ammonium-sulfate fertilizer decreased from 5.8 to 4.5 after
5 years. According to Omar and Ismail (1999), the constant
application of synthetic N fertilizers in agricultural systems
and the subsequent elevation of N levels can also increase
the osmotic potential of soils to potentially lethal levels to soil
microbiota.

In the short term, N fertilizers can induce the proliferation
of fast-growing diazotrophs due to increased nutrient avail-
ability for vegetative growth (Fierer and Jackson 2006).
However, the continuous use of N fertilizers may have far
more reaching consequences on N-fixation rates because
diazotrophs prefer assimilating the availed inorganic N instead
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of engaging in the energy-intensive N-fixation process
(Norman and Friesen 2017; Fan et al. 2019).

Although fertilization can be beneficial to facultative N-
fixers like Bradyrhizobium spp. that may, in turn, down-
regulate N-fixation (Sheffer et al. 2015), it can be disadvanta-
geous to oligotrophic soil microbes and obligate N-fixers
which have limited abilities to down-regulate N-fixation
(Fan et al. 2019). Cognizant of this, fertilization practices
may in the long run have different consequences on N-fixers
and their N-fixation rates in agricultural systems (Feng et al.
2018). However, these effects need further exploration (Fan
et al. 2019).

Compared to N fertilization, P fertilization has received
much less attention and appears to have lesser effects on soil
microbial communities (Li et al. 2020). However, a recent
experiment investigating the effects of mineral fertilization
on grassland diazotrophic soil communities in China showed
that the diversity and composition of diazotrophs were primar-
ily affected by P rather than N fertilization (Xiao et al. 2020b).
Unlike N, P exhibits low mobility and solubility in soil and
does not circulate in the atmosphere; hence, continuous P
fertilization can cause its accumulation in soil (Bennett and
Adams 2001). Since biological N-fixation (BNF) is energy-
intensive in terms of the adenosine triphosphate (ATP) re-
quirements (Reed et al. 2011; Shen et al. 2019), the accumu-
lation of P in soil can be advantageous to diazotrophs (Pajares
and Bohannan 2016; Tang et al. 2017; Xiao et al. 2020b).
Generally, this means that N-fixation may be limited under
N fertilization but stimulated under P fertilization.
Nevertheless, this depends on the timing, rates, and forms of
N and P fertilization (Xiao et al. 2020b). The abundance of P

in agricultural soils may also induce changes in diazotrophic
community structures by enhancing the competition for trace
elements like molybdenum (Mo) and iron (Fe) which are im-
portant constituents of nitrogenases (Zhao et al. 2006; Rousk
et al. 2017; Winbourne et al. 2017). The stimulation of N-
fixation by diazotrophs can further occur due to the presence
of Mo contamination in the commonly used triple superphos-
phate fertilizers (Barron et al. 2009; Wurzburger et al. 2012).
Apart from the effects on nitrogenases, P fertilizers may also
interfere with the biosynthesis of alkaline phosphomonoester-
ases which are important in inorganic P-solubilization and
increased availability of P in agricultural soils (Chen et al.
2017, 2019). However, some contrary results had previously
been reported by Ekin (2010).

The use of chemical fertilizers in agricultural systems has
further been linked to the accumulation of heavy metals in
soils (Mortvedt 1996; Lin et al. 2019) and undesirable effects
on the diversity, size, and activities of soil microbiota
(Glodowska and Wozniak 2019; Donkova and Kaloyanova
2008. According to Thomas et al. (2012), P fertilizers are
the major sources of heavy metals like cadmium (Cd), lead
(Pb), arsenic (Ar), and chromium (Cr). Although some bacte-
ria may exhibit resistance to these metals, some are extremely
sensitive. Therefore, the accumulation of heavy metals in soils
can reduce the population and diversity of some bacterial
groups but have no effects on others (Giller et al. 2009).

Chemical fertilizers can also fuel the creation of stressful
conditions for microorganisms and increase their vulnerability
to heavy metal toxicity (Glodowska and Wozniak 2019).
However, physicochemical soil properties like organic matter,
clay, and pH were previously shown to alter the effects of
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types of agrochemicals into crop fields for yield maximization, b the
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Table 1 Experiments evaluating the effects of different chemical fertilizers on beneficial plant rhizobacteria

Plant(s) Rhizobacteria Type of
fertilizer

Test
conditions

References

Alfalfa (Medicago sativa L.) Bacillus megaterium P Laboratory Liu et al. (2020a)
Cucumber (Cucumis sativus)-tomato (Solanum

lycopersicum) rotation
Firmicutes, Acidobacteria,

Betaproteobacteria, Planctomycetes
N Field Weishou et al.

(2016)
Fir (Abies sp.) Diazotrophs N and P Field Wang et al.

(2018b)
Proteobacteria, Actinobacteria N and P Field Wang et al.

(2018a)
Not mentioned N and P Field Dong et al. (2015)

Elephant grass (Pennisetum purpureum) Diazotrophs N Field Xiao et al.
(2020a)

Grassland (Imperata cylindrical, Microstegium
vagans, Apluda mutica L.)

Diazotrophs (Rhizobiales,
Rhodospirillales, Burkholderiales)

P and N Field Xiao et al.
(2020b)

Lettuce (Lactuca sativa) N-fixing N Field Chowdhury et al.
(2019)

Maize (Zea mays) Azospirillum brasilense, Herbaspirillum
seropedicae, B. pumilus, B. subtilis,
Gluconacetobacter diazotrophicus,
B. amyloliquefaciens,

N and P Field Nascimento et al.
(2020)

Diazotrophs N Field Wang et al.
(2017b)

Nitrifying bacteria Zn and N Field Montoya et al.
(2021)

Diazotrophs N Laboratory Fiorentino et al.
(2016)

Not specified N, P, K Field Semenov et al.
(2020)

Maize (Z. mays)-vegetable rotation Diazotrophs N, P, K Field Zhang et al.
(2017)

Milk vetch (Astragalus sinicus) Not specified N Field Li et al. (2019b)
Potato (Solanum tuberosum) N-fixing bacteria N, P, K Field Semenov et al.

(2020)
Rice (Oryza sativa) Diazotrophs N and P Field Huang et al.

(2019)
Diazotrophs N, P, K Field Wang et al.

(2020)
Bacillus, Pseosporales, Pseudomonas N, P, K Field Liao et al. (2018)
Not specified P Field Long and Yao

(2020)
Soybean (Glycine max) Various Zn Field Andrade et al.

(2020)
Sugarcane (Saccharum officinarum) Diazotrophs N Field Yeoh et al. (2016)
Tea (Camellia sinensis) Nitrospira and Burkholderia N Filed Lin et al. (2019)
Tomato (S. lycopersicum) Not specified N Field Caradonia et al.

(2019)
White mustard (Sinapis albaSinapis alba) Not specified N, P, K Field Semenov et al.

(2020)
Wheat (Triticum aestivumTriticum aestivum) Not specified N and P Field Li et al. (2020)

Acidobacteria, Planctomycetes, Bacteroidetes N Field Kavamura et al.
(2018)

Diazotrophs N Field Wang et al.
(2016)

Streptomyces, Paenibacillus, Pseudomonas N, P, K Glasshouse Reid et al. (2021)
Wheat (T. aestivumT. aestivum)-maize (Z.

maysZ. mays) rotation
Not specified N, P, K Feld Bei et al. (2018)
Bacillus sp. N, P, K Field Chu et al. (2007)
Alphaproteobacteria, Gammaproteobacteria,

Bacteroidetes, Deltaproteobacteria
N, P, K Filed Liu et al. (2020b)

Wheat (T. aestivum)-soybean (G. max) rotation N-fixers, e.g., Geobacter spp. N Field Fan et al. (2019)
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certain heavy metals on soil microbiota (Babich and Stotzky
1980). Nevertheless, this is yet to be clearly understood.

Effects of pesticides on beneficial plant rhizobacteria
in agricultural systems

The effects of pesticides on the biomass, enzymatic activities,
respiration, and other physiological functions of beneficial
microbial communities are extensively reviewed by Ankit
et al. (2020), Chowdhury et al. (2008), and Hussain et al.
(2009). A lot of pesticides used in the world today are gener-
ally broad spectrum and can, thus, also affect non-target or-
ganisms (Duchet et al. 2018; Hashimi et al. 2020). According
toMeena et al. (2020), only around 0.1% of applied pesticides
reach the targeted pests, while the rest reach non-target soil
microorganisms and affect their functional diversity (Jayaraj
et al. 2016). Generally, most pesticides affect the multiplica-
tion of beneficial plant microbes and their PGP functions like
N-fixation and P-solubilization (Hussain et al. 2009), proba-
bly because they can penetrate bacterial cell walls and inter-
fere with their normal metabolism (Prashar and Shah 2016).

Different studies have established the effects of several
pesticides on the activities of rhizobacterial like nitrogenases
and phosphatases that drive key functions and nutrient cycling
in soils (Shukla 2000; Hussain et al. 2009; Riah et al. 2014;
Meena et al. 2020). Since some bacteria may be resistant to
certain pesticides while others are susceptible, agricultural
soils may become dominated by a few functional bacterial
groups depending on the regularly applied pesticides, which
can affect their overall biological structure and processes
(Prashar and Shah 2016). The risk assessment of pesticides
on beneficial organisms is evaluated by the International
Organization for Biological and Integrated Control in terms
of mortality rates. In this system, a chemical is harmless or
harmful if it kills < 25 and > 75% of beneficial microbial
species (Thomson 2012). Notwithstanding, the effects of pes-
ticides on soil microbiota are complex and dependent on en-
vironmental aspects like temperature, pH, moisture, salinity,
and organic matter contents as well as the structure and con-
centration of the chemical constituents (Chowdhury et al.
2008). The effects of specific types of pesticides are further
discussed in the next sub-sections.

Effects of herbicides on beneficial plant rhizobacteria
in agricultural systems

Shortly after application, herbicides get transformed into sec-
ondary metabolites which are toxic to both target and non-
target microbial communities (Meena et al. 2020).
According to Kremer and Means (2009), herbicides generally
affect microbial biodiversity and alter their enzymatic activi-
ties, cellular compositions, and biosynthetic mechanisms. For
instance, fomesafen can be very toxic to many bacterial taxa,

but resistant species can outcompete and displace other
rhizobacterial communities (Hu et al 2019). Due to their struc-
tural homology with glutamate, glufosinate-based herbicides
can similarly inhibit glutamine synthetase which is responsi-
ble for the conversion of glutamate and ammonia to glutamine
during N metabolism (Thiour-Mauprivez et al. 2019). The
effects of herbicides on the diversity, functions, and biochem-
ical processes of beneficial plant rhizobacteria have extensive-
ly been investigated both in vitro and in planta (Table 2). Most
herbicides can inhibit rhizobacterial phosphatases (Cycoń
et al. 2013), which are important in the mineralization of or-
ganic phosphates (Aloo et al. 2021a). While studying the ef-
fects of glyphosate, paraquat, atrazine, and carbaryl herbicides
on the activities of microbial enzymes, Sannino and Gianfreda
(2001) showed that glyphosate had up to 98% inhibitory effect
on microbial phosphatases.

Different herbicides can modify the rhizobia-legume symbi-
otic interactions and interfere with their N-fixation potential
(Meena et al. 2015). Khan et al. (2006) established severe nega-
tive impacts of herbicides on the symbiotic association of chick-
pea (V. radiata). At high concentrations, some common triazine
herbicides like simazine, terbutryn, bentazone, and prometryn
can also reduce rhizobial functions (Singh and Wright 2002).
The application of 0.5–1.0 kg pendimethalin ha-1 can also disrupt
plant-Rhizobium symbioses (Strandberg and Scott-Fordsmand
2004). Similarly, 2,4-D tends to affect Rhizobium and inhibit its
nitrification and BNF processes in beans, which has previously
been confirmed by the presence of significant amounts of its
residues in Rhizobium cells and cytosols (Fabra et al. 1997).
Azotobacter which is a free-living N-fixing symbiont is also
highly sensitive to herbicides, but the extent of inhibition of its
growth, activities, development, and population depends on the
type and dosage of herbicidal constituents (dos Santos et al.
2005). Herbicides generally affect BNF in legumes by disturbing
the phytochemical-signaling needed for coordination and regula-
tion during nodulation (Fox et al. 2001; Hussain et al. 2009).
While some herbicides can affect symbiotic N-fixation by affect-
ing ATP synthesis and rhizobial nitrogenases, non-selective her-
bicides like glyphosate and paraquat can affect symbiotic N-
fixation due to ethylamine formulation (dos Santos et al. 2005).

Although glyphosate is one of themost common herbicides in
the world, a lot of debate continues to surround its usage
(Wolmarans and Swart 2014; Richmond 2018; Van Bruggen
et al. 2018; Kudsk and Mathiassen 2020). Whereas some re-
searchers advance that the herbicide presents no apparent threat
to the beneficial rhizobacteria in agricultural systems (Lane et al.
2012; Imparato et al. 2016; Newman et al. 2016), othersmaintain
that it is extremely hazardous to these microbes (Neumann et al.
2006; Kremer and Means 2009). Recent studies have shown its
effects on rhizobacterial communities of agriculturally important
crops like wheat (Lupwayi et al. 2020), soybean (Lu et al. 2018),
and maize (Akintokun et al. 2020).
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Glyphosate can induce decreased nutrient solubility by soil
microbes and is lethal to plant-beneficial bacteria like
Pseudomonads because of its high affinity to clay minerals in
acidic soils (2009). Interestingly, the effects of herbicides on
beneficial plant rhizobacteria can be fueled in the presence of
heavy metals. In a previous study by Wang and Zhou (2006),
the effects of 10 mg Cd kg-1 of soil and 5, 10, and 50 mg
butachlor kg-1 of soil on the activities of bacterial enzymes like
phosphatases were strongly related to the applied ratios. In an-
other study, Maliszewka-Kordybach and Smreczak (2003) dem-
onstrated that the combined effects of some polycyclic aromatic
hydrocarbons (PAHs) like fluorene, anthracene, pyrene, and
chrysene and heavy metals on soil microbial activities were
stronger than their effects when applied separately. The authors
also established the connection of the effects on the tested organ-
isms, the soil properties, and the concentrations of PAHs.

Effects of insecticides on beneficial plant rhizobacteria
in agricultural systems

The effects of insecticides on the beneficial plant rhizobacteria
in agricultural systems have been reported by several studies.
Carbamate insecticides like carbaryl, carbofuran, and
methiocarb have various negative impacts on soil microorgan-
isms (Sannino and Gianfreda 2001) and their enzymatic activ-
ities (Kalam and Mukherjee 2001). Similarly, organophos-
phate insecticides like quinalphos, dimethoate, malathion, lin-
dane, diazinon, and chlorpyrifos also inhibit bacterial en-
zymes (Singh and Singh 2005; Reddy et al. 2011; Tejada
et al. 2015), growth, and abundance (Van Zwieten et al.
2003; Pandey and Singh 2004; Singh and Singh 2005; Virág
et al. 2007). A recent study by Madhavi et al. (2019) has also
confirmed the effects of oxydemeton methyl and emamectin
benzoate on the population of beneficial Azospirillum sp. of
groundnuts (Arachis hypogaea L.) under laboratory condi-
tions. The results further showed that organophosphate insec-
ticides caused the cells of the bacterium to become pleomor-
phic and affected their PGP activities. Apart from enzymatic
processes, insecticides can also affect microbial growth and
metabolic functions (Muturi et al. 2017; Hashimi et al. 2020).

Insecticides can affect the growth, persistence, and functions
of symbiotic rhizobial interactions that are extremely important
for the N-nutrition in legumes (Niewiadomska 2004). The detri-
mental effects of insecticides may not be easily apparent and are
variable depending on the group and type of insecticide (Das and
Mukherjee 2000) and the N-fixers (Meena et al. 2020).
Nevertheless, the prolonged and increased use of these chemicals
continues to raise serious concerns (Meena et al. 2020). At higher
rates of application, insecticides like monocrotophos, lindane,
dichlorvos, endosulfan, malathion, and chlorpyrifos may inhibit
the nitrification process and the microbes involved therein
(Madhaiyan et al. 2006). Similar results have also recently been
reported by Mundi et al. (2020) after investigating the effects of

chlorpyrifos on the kinetics and PGP activities ofAzotobacter sp.
in vitro. In another study, the ecotoxicological effects of chlor-
pyrifos and cypermethrin on the substrate utilization, diversity,
and structure of V. radiata symbiotic microbes were established
(Walvekar et al. 2017). Azotobacter’s growth and population are
also suppressed in the presence of insecticides like fenthion,
phosphamidon, parathion,malathion, andmethyl phosphorothio-
ate (Pandey and Singh 2004).

The effects of insecticides on other beneficial rhizobacteria
have also been established. A study by Rani et al. (2018)
showed the inhibitory activities of endosulfan on the PGP
traits of the P-solubilizing Paenibacillus sp. in vitro. A sepa-
rate study by Das et al. (2003) also showed that phorate and
carbofuran have varied effects on rice (O. sativa) rhizoflora.
Further investigations into the effects of insecticides on
rhizobacterial communities include those by Das and
Mukherjee (2000), Dubey et al. (2012), Dutta et al. (2010),
Das et al. (2016), Ahemad and Khan (2011b), Filimon et al.
(2015), and Tripti et al. (2015).

Interestingly, while some insecticides may have negative
effects on the growth and/or survival of beneficial plant mi-
croorganisms, others may exhibit stimulatory or no effects on
them. In the study by Das et al. (2003), while phorate de-
creased the populations of rice rhizoflora like Bacillus,
Escherichia, Pseudomonas, Klebsiella, and Flavobacterium,
c a rbo fu ran s t imu la t ed the g rowth of Bac i l l u s ,
Corynebacterium, and Flavobacterium. Similarly, phorate,
carbofuran, and disulfoton also portrayed minimal effects on
Azotobacter populations in soil (Meena et al. 2020).
According to Gundi et al. (2007), insecticides may portray
stimulatory effects on soil bacteria because of increased sub-
strate availability from insect fatality. Nevertheless, there are
limited reports on these stimulatory or zero effects of insecti-
cides on plant-beneficial bacteria, and more investigations are
necessary to understand these dynamics.

Effects of fungicides on beneficial plant rhizobacteria
in agricultural systems

The effects of fungicides on the growth and activities of soil
microbes have been also reported by several studies (Table 3).
According to Meena et al. (2020), the residues and constitu-
ents of fungicides are toxic to several rhizobacterial enzymes.
For instance, the suppression of phospho-monoesterases has
previously been established in soils treated with thiram, cap-
tan, and trifloxystrobin fungicides (Marfo et al. 2015).
Recently, ridomil was also shown to significantly reduce the
activities of bacterial amylases (Micuti et al. 2018). While
some fungicides like mancozeb, benomyl, and tridemorph
may inhibit phosphatases and other rhizobacterial enzymes
(Shukla 2000), others like ridomil may have no apparent ef-
fects on phosphatases (Demanou et al. 2004), xylanases, and
cellulases (Micuti et al. 2018). The synthesis of some bacterial
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amino acids may also be suppressed by glucopyranosyl fun-
gicides (Molaei et al. 2017).

Most copper-based fungicides portray toxic effects on
diazotrophic bacteria (Van Zwieten et al. 2003). The tendency
of apron, arrest, and captan residues to affect N-fixation in
legume-Rhizobium symbioses has previously been established
(Kyei-Boahen et al. 2001). Mancozeb and chlorothalonil fun-
gicides can similarly reduce the nitrification process (Omar
and Ismail 1999), while carbendazims are moderately toxic
to P. fluorescens and B. subtilis (Virág et al. 2007), which
are the most common PGP rhizobacteria (Aloo et al. 2019,
2020).

The assessment of metabolic quotient (qCO2) (the rate of
respiration per unit of microbial biomass) is a perfect way of

approximating the extent of microbial disturbances in soil
(Glodowska and Wozniak 2019). According to Anderson
and Domsch (1990), qCO2 increases in soil after the applica-
tion of pesticides probably because microorganisms are forced
to use more energy to maintain their cells under these condi-
tions. Earlier investigations by Jones and Ananyewa (2001)
also confirmed that the addition of metalaxyl in soil can dis-
turb qCO2 for 21 days. In another study, qCO2 was
established to be significantly higher in soils treated with at-
razine herbicides than in untreated soils (Moreno et al. 2007).
In rare cases, certain beneficial plant rhizobacteria such as
those involved in P-solubilization and N-fixationmay be stim-
ulated by some fungicides (Sun et al. 2020), but the cause of
this is not yet established.

Table 3 Experiments evaluating the effects of fungicides on growth, diversity, and activities of plant-beneficial rhizobacteria

Test/source crop Bacterial strains affected Fungicide Test
conditions

Reference

Barley (Hordeum vulgare) Pseudomonas spp. Oxafun T Field Kaszubiak and
Durska (2000)

Cabbage (Brassica oleracea) B. subtilis Kitazin, hexaconazole, metalaxyl,
carbendazim

Laboratory Shahid and Khan
(2018)

Chickpea (C. arietinum) Rhizobium ciceri Thiram, captan, metalaxyl Controlled Kyei-Boahen et al.
(2001)

Green gram (V. radiata) Bradyrhizobium sp. Hexaconazole, metalaxyl, kitazin Laboratory Ahemad and Khan
(2011b)

Groundnut (A. hypogaea L.) Azospirillum sp. Benomyl, dithane Z-78 Laboratory Madhavi et al. (2019)

Lentil (L. culinaris, Faba
beans (V. faba)

Rhizobia Mancozeb Laboratory Mohamad and
Al-naser (2018)

Mustard (B. campestris) E. asburiae Tebuconazole, hexaconazole,
metalaxyl, kitazin

Laboratory Ahemad and Khan
(2010)

P. putida Tebuconazole, hexaconazole,
metalaxyl, kitazin

Laboratory Ahemad and Khan
(2012b)

Not specified Not specified Carbendazim Laboratory Shao and Zhang
(2017)

Not specified Bacillus Falcon 460 EC Laboratory Baćmaga et al. (2016)

Not specified Nitrifying bacteria Mancozeb, dimethomorph Laboratory Kinney et al. (2005)

Not specified Azotobacter sp. Raxil Laboratory Mundi et al. (2020)

Not specified G. diazotrophicus Ridomil Laboratory Madhaiyan et al.
(2006)

Not specified Nitrifying bacteria Ridomil gold (+ copper) Field Demanou et al.
(2004)

Pea (P. sativum) Rhizobium sp. Hexaconazole, metalaxyl, kitazin Laboratory Ahemad and Khan
(2012a)

Rhizobia mancozeb Laboratory Mohamad and
Al-naser (2018)

Pepper (Piper nigrum) Paenarthrobacter Iprodione Laboratory Katsoula et al. (2020)

Soybean (G. max) R. japonicum Captan, carbendazim Field Kaur et al. (2007)

Tomato (S. lycopersicum) Burkholderia sp. mancozeb Laboratory Tripti et al. (2015)

Wheat (T. aestivum) Pseudomonas, Bacillus, Azospirillum,
Agrobacterium sp.

Alert plus, darosal, mancozeb, benlate,
captan, vitavax

Laboratory Mubeen et al. (2006)
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Prospects and possible solutions
for agricultural sustainability

Reducing the environmental costs of contemporary agricul-
ture requires novel technological tools and management strat-
egies to shift the current use of agrochemicals to more sustain-
able methods. Soil amendment with biochar has received
much attention over the last few decades, probably due to its
ability to improve soil fertility and increase crop yields
(Backer et al. 2018). According to Brtnicky et al. (2019), the
amendment of soil with biochar may counteract the deleteri-
ous effects of herbicides on soil microbiota. Fairly recently,
Glodowska et al. (2016) showed that biochar can promote the
viability of PGP bacteria for about half a year. Using molec-
ular techniques such as the next-generation sequencing and
terminal restriction fragment length polymorphism,
Anderson et al. (2011) established the positive effects of
biochar-amended soils on Bradyrhizobiaceae. This is proba-
bly because biochar induces various physicochemical changes
in soil that together improve microbial survival and functions
in agricultural soils (Zimmerman 2010; Backer et al. 2017;
Jenkins et al. 2017). It is, however, important to note that
biochar materials vary and other factors like production con-
ditions and feedstock materials may influence the biological,
chemical, and physical properties of the final material and,
subsequently, its field performance (Nguyen et al. 2017;
Wang et al. 2017a).

Lime can be used to manage soil acidification from
prolonged chemical fertilization and its effects on beneficial
plant rhizobacteria in agricultural systems (Glodowska and
Wozniak 2019). Although studies by Ma et al. (2018) have
disputed this, several reports concur that liming can help to
counteract the effects of long-term fertilization on soil proper-
ties and bacterial community structures (Jaskulska et al. 2014;
Lu et al. 2016; Li et al. 2019a). In tempered climates, lime can
raise the pH of soils to between 5.7 and 6.5 and positively
influence their physicochemical conditions (Hynes and Naidu
1998).

Microbial inoculants or biofertilizers are promising options
for mitigating the negative environmental effects of chemical
fertilizers due to their PGP potential and capacity to promote
nutrient availability and uptake by plants (Aloo et al. 2020;
Basu et al. 2021). Although microbial inoculants do not al-
ways compete favorably with the inherent microbial strains in
soil, isolates from specific soils can perform well in similar
habitats and exhibit better adaptation to the typical ecological
stresses and prevailing environmental conditions (Shaikh and
Sayyed 2015; Bakhshandeh et al. 2017). Although
rhizobacteria-based technology is an emerging technology
for crop production worldwide, its adoption and integration
as biofertilizers are still subject to research, improved field
performance, and development of effective inoculants (Aloo
et al. 2021b).

Conclusion

Contemporary agriculture continues to rely on pesticides, her-
bicides, and fertilizers to boost crop production. Despite the
indisputable contribution of these chemicals to global crop
production and food security, a lot of uncertainty and contro-
versy still surrounds their continued application in agricultural
systems. Although a lot of evidence suggests that they can
directly alter soil properties and affect the beneficial plant
microbes in agricultural systems, some studies show that they
can stimulate the proliferation of some beneficial soil micro-
organisms. Notwithstanding, alternative crop cultivation
mechanisms that employ fewer agrochemicals should be con-
sidered, pursued, and maximized to avoid the possible delete-
rious effects of agrochemicals on beneficial plant
rhizobacteria in agricultural systems and promote agricultural
sustainability on a global perspective.
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