Publications

2022
Koech, M. K., Ali, S. M., Karoney, M. J., & Kigen, G. (2022). Severe abacavir hypersensitivity reaction in a patient with human immunodeficiency virus infection: a case report. J Med Case RepJ Med Case RepJ Med Case Rep, 16, 407. presented at the Nov 8. Abstract
BACKGROUND: Abacavir is a nucleoside reverse transcriptase inhibitor that is used as a component of the antiretroviral treatment regimen in the management of the human immunodeficiency virus for both adults and children. It is efficacious, but its use may be limited by a hypersensitivity reaction linked with the HLA-B*57:01 genotype. HLA-B*57:01 has been reported to be rare in African populations. Because of the nature of its presentation, abacavir hypersensitivity is prone to late diagnosis and treatment, especially in settings where HLA-B*57:01 genotyping is not routinely done. CASE REPORT: We report a case of a severe hypersensitivity reaction in a 44-year-old Kenyan female living with the human immunodeficiency virus and on abacavir-containing antiretroviral therapy. The patient presented to the hospital after recurrent treatment for a throat infection with complaints of fever, headache, throat ache, vomiting, and a generalized rash. Laboratory results evidenced raised aminotransferases, for which she was advised to stop the antiretrovirals that she had recently been started on. The regimen consisted of abacavir, lamivudine, and dolutegravir. She responded well to treatment but was readmitted a day after discharge with vomiting, severe abdominal pains, diarrhea, and hypotension. Her symptoms disappeared upon admission, but she was readmitted again a few hours after discharge in a hysterical state with burning chest pain and chills. Suspecting abacavir hypersensitivity, upon interrogation she reported that she had taken the abacavir-containing antiretrovirals shortly before she was taken ill. A sample for HLA-B*57:01 was taken and tested positive. Her antiretroviral regimen was substituted to tenofovir, lamivudine, and dolutegravir, and on subsequent follow-up she has been well. CONCLUSIONS: Clinicians should always be cognizant of this adverse reaction whenever they initiate an abacavir-containing therapy. We would recommend that studies be done in our setting to verify the prevalence of HLA-B*57:01.
Kibet, E., Musafiri, C. M., Kiboi, M. N., Macharia, J., Ng’etich, O. K., Kosgei, D. K., Mulianga, B., et al. (2022). Soil Organic Carbon Stocks under Different Land Utilization Types in Western Kenya. Sustainability, 14. Website Abstract
The up-surging population in sub-Saharan Africa (SSA) has led to the conversion of more land for agricultural purposes. Resilient land utilization types that input carbon to the soil are key in enhancing climate change mitigation. However, there are limited data on different land utilization types’ contribution to climate mitigation through carbon input to soils. The study aims to quantify carbon stock across different land utilization types (LUT) practiced in Western Kenya. The following land utilization types were studied: agroforestry M (agroforestry with Markhamia lutea), sole sorghum, agroforestry L (agroforestry with Leucaena leucocephalaI), sole maize, and grazing land replicated thrice. To determine soil bulk density, SOC concentration, and soil carbon stock, soil samples were collected at depths of 0–5, 5–10, 10–20, and 20–30 cm from different LUTs. A PROC ANOVA was used to determine the difference in soil bulk density, SOC, and SOC stock between different LUTs and depths. The four variables differed across the LUTs and depths. A high soil bulk density was observed at 0–5 cm under grazing land (1.6 g cm−3) and the lowest under agroforestry M (1.30 g cm−3). Conversely, the soil bulk density was low at 20–30 cm under grazing land. The 0–5 cm depth accounted for a high share of SOC and SOC stock under Agroforestry M, while the 10–20 and 20–30 cm depth accounted for the high share of SOC stock under agroforestry L. The study showed differences in SOC across the different depths and LUTs. The findings highlight that agroforestry L and agroforestry M are promising interventions toward climate mitigation through carbon induction to soils.

Pages